§UNT

University of North Texas

CSCE 2110
Foundations of Data Structures

Graph T

Slides borrowed/adapted from Prof. Yan Huang from UNT

CSCE 2110 - Foundations of Data Structure

Northwest Airline Flight

. Anchorage

Seattle

Atlanta

CSCE 2110 - Foundations of Data Structure

Computer Network Or Internet

Charter Comcast

Regional Network

Intel UNT

CSCE 2110 - Foundations of Data Structure

Application

« Traveling Salesman

—=_

Start

o Find the shortest path that connects all cities
without a loop.

CSCE 2110 - Foundations of Data Structure

Concepts of Graphs

\ __— node or vertex

edges (weight)

CSCE 2110 - Foundations of Data Structure

Graph Definition

« Agraph G = (V,E) is composed of:

V: set of vertices (hodes)

E: set of edges (arcs) connecting the vertices in V
« Anedgee=(u,v)is apair of vertices
« Example:

V={ab,c,de}

E= {(a,b).(a,c).(a,d),
(b.e).(cd)(c.e), (d.e)}

CSCE 2110 - Foundations of Data Structure

Undirected vs. Directed Gr'aph

‘/ \‘ / 2N

VN

Undirected Graph Directed Graph

- edges have no direction - edges have a specific
direction from one vertex fo
another.

CSCE 2110 - Foundations of Data Structure

Degree of a Vertex

The degree of a vertex is the number of edges to that
vertex

For directed graph,

o the in-degree of a vertex vis the number of edges
that have v as the head

o the out-degree of a vertex v is the number of edges
that have v as the tail

if di is the degree of a vertex i in a graph & with n vertices and
e edges, the number of edges is

n—1
e = (Z d)/?2 Hint: Adjacent vertices are
0 counted twice.

CSCE 2110 - Foundations of Data Structure

Degree of a Vertex

Degree(A)=? In-degree(A)=? Out-degree(A)=?
Degree(B)=? In-degree(B)=? Out-degree(B)=?
Degree(C)=? In-degree(C)=? Out-degree(C)=?
Degree(D)=? In-degree(D)=? Out-degree(D)=?

CSCE 2110 - Foundations of Data Structure

Subgraph

* Subgraph:

o subset of vertices and edges

Subgraph 2
5 grap

CSCE 2110 - Foundations of Data Structure

Simple Path

« A simple path is a path such that all vertices are distinct,
except that the first and the last could be the same.

o ABCD is a simple path

CSCE 2110 - Foundations of Data Structure

Cycle

* A cycleis apath that starts and ends at the same
point. For undirected graph, the edges are distinct.

o« ®
e

circle

CSCE 2110 - Foundations of Data Structure

Connected vs. Unconnected Graph

Connected Graph Unconnected Graph

CSCE 2110 - Foundations of Data Structure

Directed Acyclic Graph

« Directed Acyclic Graph (DAG) : directed graph without

cycle
<

CSCE 2110 - Foundations of Data Structure

Weighted Graph

« Weighted graph: a graph with numbers assigned to its
edges

« Weight: cost, distance, travel time, hop, etc.

ON
2(y 1\

@ ®
5@/4

CSCE 2110 - Foundations of Data Structure

Representation Of Graph

* Two representations
o Adjacency Matrix
o Adjacency List

CSCE 2110 - Foundations of Data Structure

Adjacency Matrix

« Assume N nodes in graph
« Use 2D Matrix A[O..N-1][0..N-1]

o if vertexiand vertex j are adjacent in graph, A[i][j]1=1,
o otherwise A[i][j]=0

o if vertexi has a loop, A[i][i]=1

o if vertex i has no loop, A[i][i]=0

CSCE 2110 - Foundations of Data Structure

Example of Adjacency Matrix

CSCE 2110 - Foundations of Data Structure

Example of Adjacency Matrix

AL

O|l—rI~—0O| 0
ey e N
R IO(= =N
Olmr— OlWw

(023
~
S

0
SO, Matrix A = 1 0 1
1
\1 1 OJ

CSCE 2110 - Foundations of Data Stri.cture

Example of Adjacency Matrix

a So, Matrix A =?

CSCE 2110 - Foundations of Data Structure

Example of Adjacency Matrix

[i]j]
@ [%

Ol=|= | =1 0O
= = (O = -
—_= O = =N
(== O W

WIN |-

So, Matrix A = 1 0 1

CSCE 2110 - Foundations of Data Stricture

Example of Adjacency Matrix

Al o[1] 2 | 3
@ 0 0 1 1 1
1 0 0 0 1
é \® 2 0| O 0 1
/ 3 0 0 0 0
\ 0 1 1)

SO, Matrix A = 0 0 o)

CSCE 2110 - Foundations of Data Structure

Undirected vs. Directed
e Undirected graph

o adjacency matrix is symmetric
o AlIFFALII]
« Directed graph
o adjacency matrix may not be symmetric
o Ali][jI# ALIli]

CSCE 2110 - Foundations of Data Structure

Weighted Graph

Alillj1 | O 1 2 3
0 0 20 10 1
1 20 0 0 5
@ 2 10 0 0 4
10
% 1\® 3 1 | 5 | 4 | o
4 0 20 10)
5 1
So, Matrix A = 20 0 0
5
N0 0 0~
4

CSCE 2110 - Foundations of Data Striicture

Adjacency List

* Anarray of list

* the ith element of the array is a list of vertices that
connect to vertex i

0 " 1 " 2 3
@ 1 " 3
N 2 3
.
\ / vertex O connect to vertex 1,2 and 3

vertex 1 connects to 3
vertex 2 connects to 3

CSCE 2110 - Foundations of Data Structure

Weighted Graph

. gh'red graph: extend each node with an addition
field: weight

0 1110 2120 311
10
2 0 (20 35
4
3 01 14 215

CSCE 2110 - Foundations of Data Structure

Comparison Of Representations

Adjacency | Adjacency
Cost Matrix List
Given two vertices u and v: o) de?‘gzee 2
find out whether u and v are adjacent 0
(N)
: , degree of
Given a :ert::lx u: ") O(N) node
num n
enumerate all neighbors of u O(N)
Summations
For all vertices: of all node
. O(N?)]
enumerate all neighbors of each vertex égree
O(E)

CSCE 2110 - Foundations of Data Structure

Complete Graph

There is an edge between any two vertices

/ | \ Total number of edges in graph:
\ E = N(N-1)/2 = O(N?)

CSCE 2110 - Foundations of Data Structure

Sparse Graph

*+ There is a very small humber of edges in the graph

For example:
/ E = N-1= O(N)

CSCE 2110 - Foundations of Data Structure

Space Requirements

* Memory space:
o adjacency matrix O(N?)
o adjacency list O(E)
« Sparse graph
o adjacency list is better
- Dense graph

O same running time

CSCE 2110 - Foundations of Data Structure

Graph Traversal

« List out all cities that United Airline can reach from
Hartford Airport

/@\'
/

Hartford

CSCE 2110 - Foundations of Data Structure

Graph Traversal

* From vertex u, list out all vertices that can be reached
in graph G

« Set of nodes to expand

« Each node has a flag to indicate visited or not

CSCE 2110 - Foundations of Data Structure

Traversal Algorithm

« Step l: { Hartford}
o find unvisited neighbors of Hartford

o {Hartford NYC, CHI }
@/ ? Hartford

CSCE 2110 - Foundations of Data Structure

Traversal Algorithm

« Step 2: { Hartford NYC, CHI }
o find unvisited neighbors of NYC, CHI
o { Hartford, NYC, CHI LA, SF}

Hartford

CSCE 2110 - Foundations of Data Structure

Traversal Algorithm

« Step 3: {Hartford, NYC, CHI LA, SF}
o find unvisited neighbors of LA, SF

o no other new neighbors

"

Hartford

CSCE 2110 - Foundations of Data Structure

Traversal Algorithm

* Finally, we get all cities that United Airline can reach
from Hartford Airport

o {Hartford, NYC, CHI, LA, SF}

©
*
@

Hartford

CSCE 2110 - Foundations of Data Structure

Algorithm of Graph Traversal

1. Mark all nodes as unvisited
2. Picka starting vertex u, add u to probing list
3. While (probing list is not empty)
{
Remove a node v from probing list
Mark node v as visited

For each neighbor w of v, if w is unvisited,
add w to the probing list

CSCE 2110 - Foundations of Data Structure

Graph Traversal Algorithms

« Two algorithms
o Depth First Traversal
o Breadth First Traversal

CSCE 2110 - Foundations of Data Structure

Depth First Traversal

* Probing List is implemented as stack (LIFO)

« Example
o A's neighbor: B,C, E
o B's neighbor: A,C, F
o C's neighbor: A, B, D
o D's neighbor: E,C, F
o E's neighbor: A, D
o F's neighbor: B, D

o start from vertex A

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF
C's neighbor: A B D
D's neighbor: E CF
E's neighbor: A D
F's neighbor: B D

VVVVYVVY

« TInitial State
o Visited Vertices {}
o Probing Vertices { A }
o Unvisited Vertices{ A,B,C,D,E, F}

stack FA

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D ¥ —© (E)
F D

VVVVYVVY

F's neighbor: B D

« Peek avertex from stack, it is
A, mark it as visited

« Find A's first unvisited
neighbor, push it into stack
o Visited Vertices { A} —
o Probing vertices { A, B} A
o Unvisited Vertices{B,C,D, E, F} stack

> (0

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D e C G
F D

VVVVYVVY

F's neighbor: B D

« Peek avertex from stack, it is B,
mark it as visited

« Find B's first unvisited neighbor,
push it in stack

C
o Visited Vertices { A, B} B |= B
o Probing Vertices{ A, B, C} A A
o Unvisited Vertices{C,D, E, F} stack

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © (E)
F D)

VVVVYVVY

F's neighbor: B D

« Peekavertex from stack, it is C,

mark it as visited

« Find C's first unvisited neighbor,
push it in stack D
o Visited Vertices { A, B, C} C _ 1€
o Probing Vertices{ A,B,C,D} 1]2 2
o Unvisited Vertices{ D, E, F } stack

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF
C's neighbor: A B D
D's neighbor: E CF
E's neighbor: A D
F's neighbor: B D

VVVVYVVY

« Peek avertex from stack, it is
D, mark it as visited

 Find D's first unvisited
neighbor, push it in stack
o Visited Vertices { A,B,C,D}
o Probing Vertices{ A,B,C,D,E}
o Unvisited Vertices{ E, F} stack

> (0D
'

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © ‘E)
F D)

VVVVYVVY

F's neighbor: B D

Peek a vertex from stack, it is E,
mark it as visited

* Find E's first unvisited neighbor,
no vertex found, Pop E

o Visited Vertices { A,B,C, D, E}
o Probing Vertices{ A,B,C,D}
o Unvisited Vertices { F } stack

b divel @) wiles
> (O

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D e G @
F D

VVVVYVVY

F's neighbor: B D

« Peek a vertex from stack, it is D,
mark it as visited

« Find D's first unvisited neighbor,
push it in stack
o Visited Vertices { A,B,C,D,E}
o Probing Vertices{ A, B, C, D, F}
o Unvisited Vertices { F }

stack

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © ‘E)
F D

VVVVYVVY

F's neighbor: B D

Peek a vertex from stack, it is F,
mark it as visited

« Find F's first unvisited neighbor,
no vertex found, Pop F

o Visited Vertices { A,B,C,D,E,F}
o Probing Vertices{ A, B, C, D}
o Unvisited Vertices { } stack

o |vo] @llwiles
slvs] @)@

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © ‘E)
F D

VVVVYVVY

F's neighbor: B D

« Peek avertex from stack, it is

D, mark it as visited

« Find D's first unvisited neighbor, D
no vertex found, Pop D C c
o Visited Vertices { A,B,C,D,E,F} B |™>|B
o Probing Vertices{ A, B, C} A A
o Unvisited Vertices { } stack

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © ‘E)
F D

VVVVYVVY

F's neighbor: B D

Peek a vertex from stack, it is C,
mark it as visited

« Find C's first unvisited neighbor,
no vertex found, Pop C

C
o Visited Vertices { A,B,C,D,E,F} B ™| B
o Probing Vertices{ A, B } A A
o Unvisited Vertices { } stack

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © ‘E)
F D

VVVVYVVY

F's neighbor: B D

Peek a vertex from stack, it is B,
mark it as visited

« Find B's first unvisited neighbor,
no vertex found, Pop B

o Visited Vertices { A,B,C,D,E,F} B |=—
o Probing Vertices { A} A A
o Unvisited Vertices { } stack

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © (E)
F D

VVVVYVVY

F's neighbor: B D

« Peek avertex from stack, it is
A, mark it as visited

« Find A's first unvisited neighbor,
no vertex found, Pop A

o Visited Vertices { A,B,C,D,E, F} —>
o Probing Vertices { } A
o Unvisited Vertices { } stack

CSCE 2110 - Foundations of Data Structure

Depth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © (E)
F D

VVVVYVVY

F's neighbor: B D

« Now probing list is empty

« End of Depth First Traversal
o Visited Vertices { A,B,C,D,E,F}
o Probing Vertices { }
o Unvisited Vertices { }

stack

CSCE 2110 - Foundations of Data Structure

Breadth First Traversal

* Probing List is implemented as queue (FIFO)

« Example
o A'sneighbor: BCE
o B's neighbor: ACF
o C's neighbor: ABD
o D's neighbor: ECF
o E's neighbor: A D
o F's neighbor: B D

o start from vertex A

CSCE 2110 - Foundations of Data Structure

Breadth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF
C's neighbor: A B D
D's neighbor: E CF
E's neighbor: A D
F's neighbor: B D

VVVVYVVY

e« TInitial State
o Visited Vertices {}

o Probing Vertices{ A } A
O Unvisited Vertices { A, B, C, queue
D.E,F}

CSCE 2110 - Foundations of Data Structure

Breadth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D G G e
F D

VVVVYVVY

F's neighbor: B D

Delete first vertex from queue, it
is A, mark it as visited

* Find A’s all unvisited neighbors,

mark them as visited, put them into A
queue
o Visited Vertices { A,B,C, E} B|C|E

o Unvisited Vertices{ D, F}

CSCE 2110 - Foundations of Data Structure

Breadth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF
C's neighbor: A B D
D's neighbor: E CF
E's neighbor: A D
F's neighbor: B D

VVVVYVVY

Delete first vertex from queue, it
is B, mark it as visited

« Find B's all unvisited neighbors,
mark them as visited, put them into LBIECIE
queue

o Visited Vertices { A,B,C,E, F} C|lE|F
@) Pr'Obing Vertices { C, E, F} queue
o Unvisited Vertices { D }

CSCE 2110 - Foundations of Data Structure

Breadth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF
C's neighbor: A B D
D's neighbor: E CF
E's neighbor: A D
F's neighbor: B D

VVVVYVVY

Delete first vertex from queue, it
is C, mark it as visited

* Find C's all unvisited neighbors,
mark them as visited, put them into LCLELE
queue

o Visited Vertices { A,B,C,E,F,D} E|F|D
@) Pr'Obing Vertices { E, F, D} queue
o Unvisited Vertices { }

CSCE 2110 - Foundations of Data Structure

Breadth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © ‘E)
F D

VVVVYVVY

F's neighbor: B D

Delete first vertex from queue, it
is E, mark it as visited

vertex found
o Visited Vertices { A,B,C,E,F,D} F D
o Probing Vertices{ F,D}

o Unvisited Vertices { }

« Find E's all unvisited neighbors, no [ETE Di

CSCE 2110 - Foundations of Data Structure

Breadth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © ‘E)
F D

VVVVYVVY

F's neighbor: B D

« Delete first vertex from queue, it is
F. mark it as visited

vertex found
o Visited Vertices { A,B,C,E,F,D} D
o Probing Vertices { D }
o Unvisited Vertices { }

« Find F's all unvisited neighbors, no F D i

queue

CSCE 2110 - Foundations of Data Structure

Breadth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © ‘E)
F D

VVVVYVVY

F's neighbor: B D

« Delete first vertex from queue, it is
D, mark it as visited

vertex found

o Visited Vertices { A,B,C,E,F,D}
o Probing Vertices { }

o Unvisited Vertices { }

* Find D's all unvisited neighbors, no D i

queue

CSCE 2110 - Foundations of Data Structure

Breadth First Traversal (Cont)

A’'s neighbor: BCE
B's neighbor: A CF

C's neighbor: A B D ‘

D's neighbor: E CF

E's neighbor: A D B © ‘E)
F D

VVVVYVVY

F's neighbor: B D

« Now the queue is empty

 End of Breadth First Traversal
o Visited Vertices { A,B,C,E,F,D}
o Probing Vertices { }
o Unvisited Vertices { }

queue

CSCE 2110 - Foundations of Data Structure

Difference Between DFT & BF T

* Depth First Traversal (DFT)
o order of visited: A,B,C,D,E, F

A
« Breadth First Traversal (BFT) 9‘@\@
F D

o order of visited: A,B,C,E, F, D

CSCE 2110 - Foundations of Data Structure

	Slide 1
	Slide 2: Northwest Airline Flight
	Slide 3: Computer Network Or Internet
	Slide 4: Application
	Slide 5: Concepts of Graphs
	Slide 6: Graph Definition
	Slide 7: Undirected vs. Directed Graph
	Slide 8
	Slide 9: Degree of a Vertex
	Slide 10: Subgraph
	Slide 11: Simple Path
	Slide 12: Cycle
	Slide 13: Connected vs. Unconnected Graph
	Slide 14: Directed Acyclic Graph
	Slide 15: Weighted Graph
	Slide 16: Representation Of Graph
	Slide 17: Adjacency Matrix
	Slide 18: Example of Adjacency Matrix
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Undirected vs. Directed
	Slide 24: Weighted Graph
	Slide 25: Adjacency List
	Slide 26: Weighted Graph
	Slide 27: Comparison Of Representations
	Slide 28: Complete Graph
	Slide 29: Sparse Graph
	Slide 30: Space Requirements
	Slide 31: Graph Traversal
	Slide 32: Graph Traversal
	Slide 33: Traversal Algorithm
	Slide 34: Traversal Algorithm
	Slide 35: Traversal Algorithm
	Slide 36: Traversal Algorithm
	Slide 37: Algorithm of Graph Traversal
	Slide 38: Graph Traversal Algorithms
	Slide 39: Depth First Traversal
	Slide 40: Depth First Traversal (Cont)
	Slide 41: Depth First Traversal (Cont)
	Slide 42: Depth First Traversal (Cont)
	Slide 43: Depth First Traversal (Cont)
	Slide 44: Depth First Traversal (Cont)
	Slide 45: Depth First Traversal (Cont)
	Slide 46: Depth First Traversal (Cont)
	Slide 47: Depth First Traversal (Cont)
	Slide 48: Depth First Traversal (Cont)
	Slide 49: Depth First Traversal (Cont)
	Slide 50: Depth First Traversal (Cont)
	Slide 51: Depth First Traversal (Cont)
	Slide 52: Depth First Traversal (Cont)
	Slide 53: Breadth First Traversal
	Slide 54: Breadth First Traversal (Cont)
	Slide 55: Breadth First Traversal (Cont)
	Slide 56: Breadth First Traversal (Cont)
	Slide 57: Breadth First Traversal (Cont)
	Slide 58: Breadth First Traversal (Cont)
	Slide 59: Breadth First Traversal (Cont)
	Slide 60: Breadth First Traversal (Cont)
	Slide 61: Breadth First Traversal (Cont)
	Slide 62: Difference Between DFT & BFT

