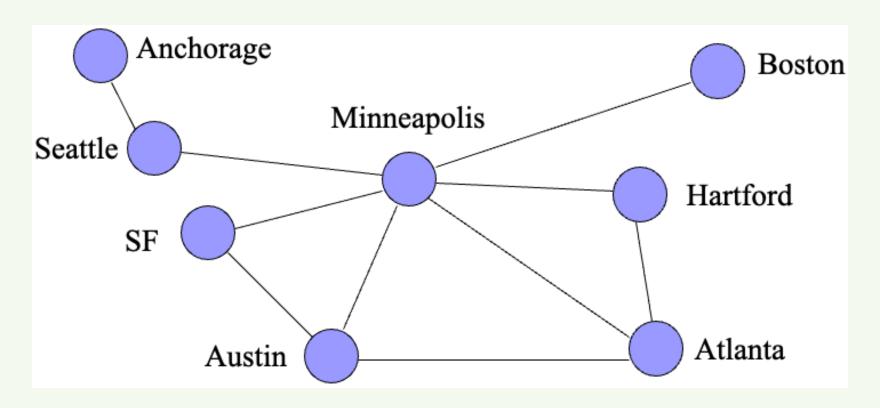


# CSCE 2110 Foundations of Data Structures

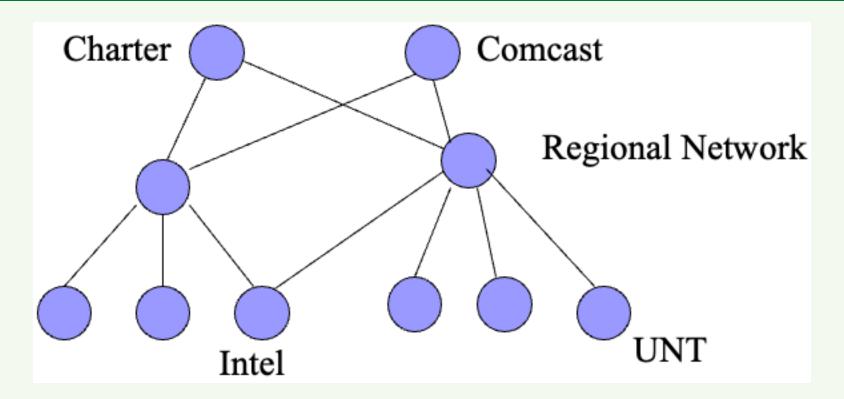
Graph I

Slides borrowed/adapted from Prof. Yan Huang from UNT

#### Northwest Airline Flight

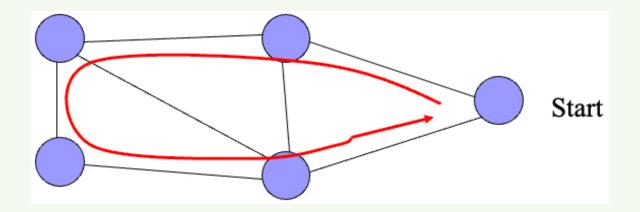


# Computer Network Or Internet



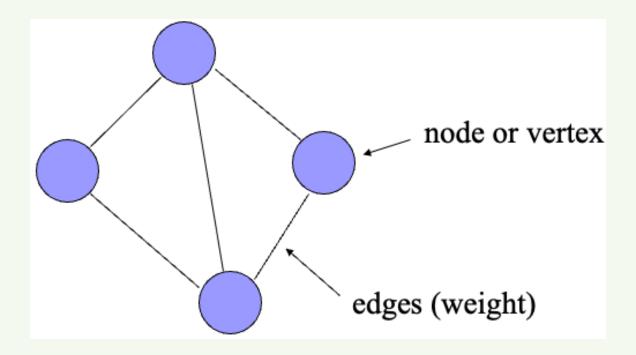
#### Application

Traveling Salesman



 Find the shortest path that connects all cities without a loop.

# Concepts of Graphs



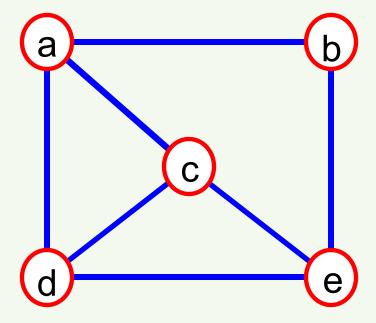
## Graph Definition

A graph G = (V,E) is composed of:

V: set of vertices (nodes)

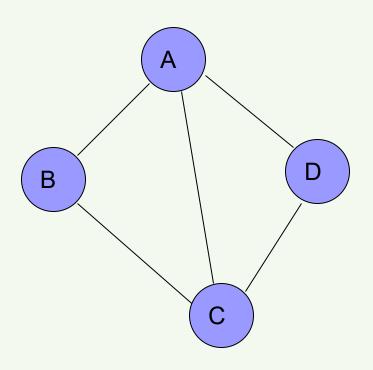
E: set of edges (arcs) connecting the vertices in V

- An edge e = (u,v) is a pair of vertices
- Example:



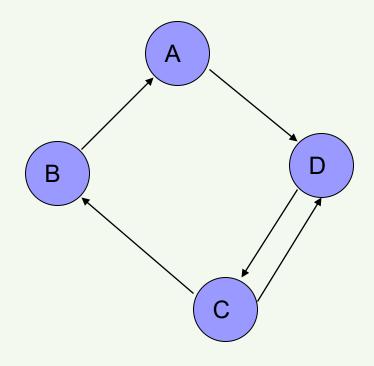
$$V = \{a,b,c,d,e\}$$

# Undirected vs. Directed Graph





- edges have no direction



#### Directed Graph

- edges have a specific direction from one vertex to another.

#### Degree of a Vertex

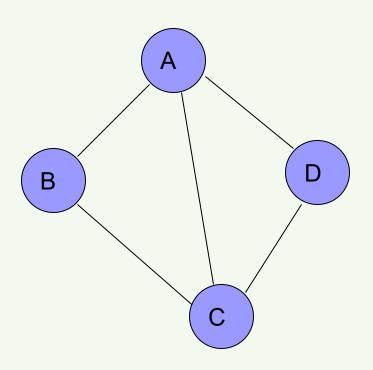
- The degree of a vertex is the number of edges to that vertex
- For directed graph,
  - $\circ$  the in-degree of a vertex v is the number of edges that have v as the head
  - $\circ$  the out-degree of a vertex v is the number of edges that have v as the tail

if di is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$e = (\sum_{i=0}^{n-1} d_i)/2$$

Hint: Adjacent vertices are counted twice.

#### Degree of a Vertex

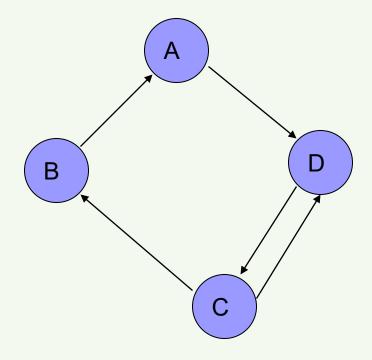


Degree(A)=?

Degree(B)=?

Degree(C)=?

Degree(D)=?



In-degree(A)=? Out-degree(A)=?

In-degree(B)=? Out-degree(B)=?

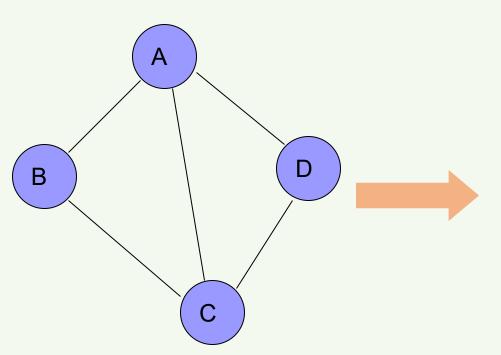
In-degree(C)=?

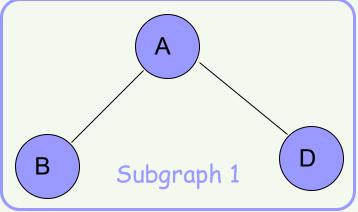
In-degree(D)=? Out-degree(D)=?

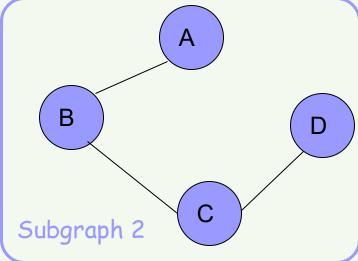
# Subgraph

#### Subgraph:

subset of vertices and edges

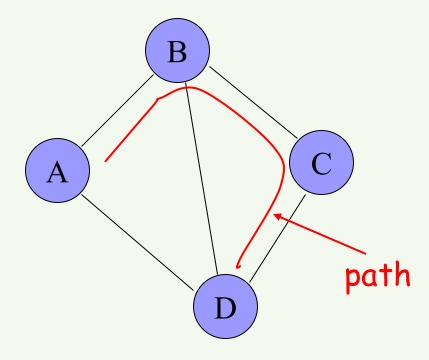






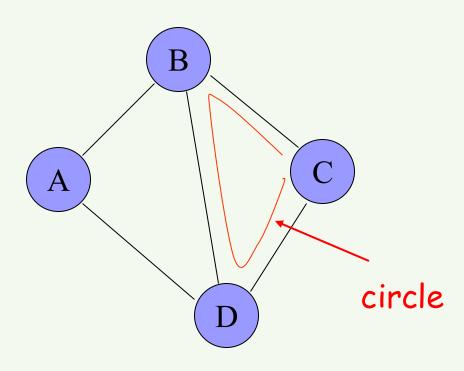
### Simple Path

- A simple path is a path such that all vertices are distinct, except that the first and the last could be the same.
  - ABCD is a simple path

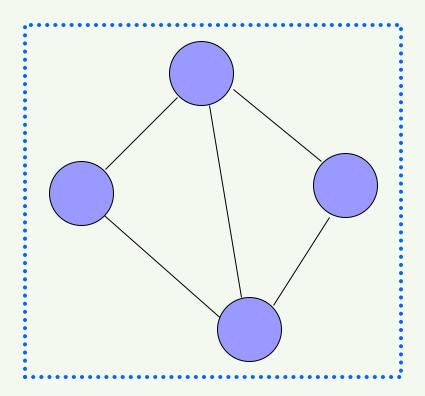


# Cycle

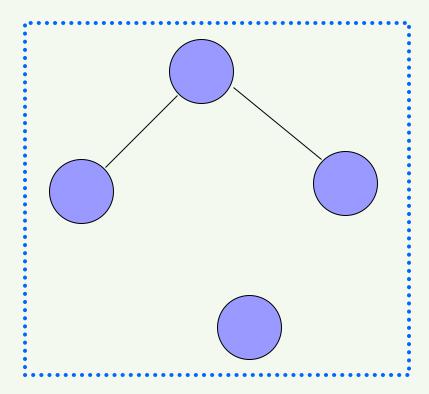
- A cycle is a path that starts and ends at the same point. For undirected graph, the edges are distinct.
  - o CBDC is a cycle



## Connected vs. Unconnected Graph



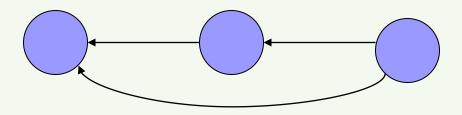
Connected Graph



Unconnected Graph

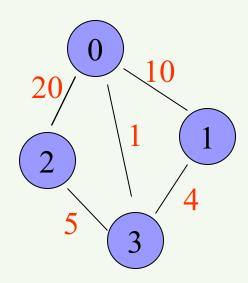
#### Directed Acyclic Graph

Directed Acyclic Graph (DAG): directed graph without cycle



## Weighted Graph

- Weighted graph: a graph with numbers assigned to its edges
- Weight: cost, distance, travel time, hop, etc.

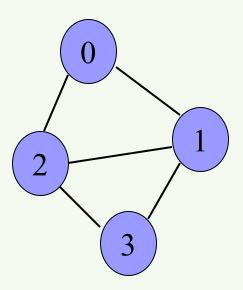


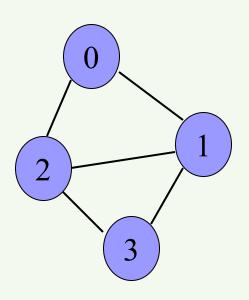
#### Representation Of Graph

- Two representations
  - Adjacency Matrix
  - Adjacency List

#### Adjacency Matrix

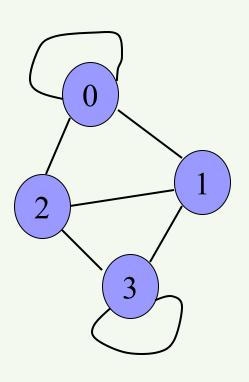
- Assume N nodes in graph
- Use 2D Matrix A[0...N-1][0...N-1]
  - if vertex i and vertex j are adjacent in graph, A[i][j] = 1,
  - o otherwise A[i][j] = 0
  - o if vertex i has a loop, A[i][i] = 1
  - o if vertex i has no loop, A[i][i] = 0



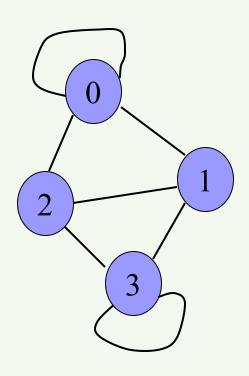


| <i>A</i> [i][j] | 0 | 1 | 2 | 3 |
|-----------------|---|---|---|---|
| 0               | 0 | 1 | 1 | 0 |
| 1               | 1 | 0 | 1 | 1 |
| 2               | 1 | 1 | 0 | 1 |
| 3               | 0 | 1 | 1 | 0 |

So, Matrix 
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & & \\ 1 & 0 & 1 \\ 1 & & \\ 1 & & 1 \end{pmatrix}$$

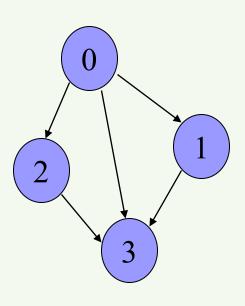


So, Matrix A =?



| <b>A</b> [i][j] | 0 | 1 | 2 | 3 |
|-----------------|---|---|---|---|
| 0               | 1 | 1 | 1 | 0 |
| 1               | 1 | 0 | 1 | 1 |
| 2               | 1 | 1 | 0 | 1 |
| 3               | 0 | 1 | 1 | 1 |

So, Matrix 
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & & & \\ 1 & 0 & 1 \\ 1 & & & \\ 1 & 1 & 0 \end{pmatrix}$$



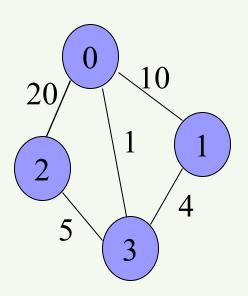
| <i>A</i> [i][j] | 0 | 1 | 2 | 3 |
|-----------------|---|---|---|---|
| 0               | 0 | 1 | 1 | 1 |
| 1               | 0 | 0 | 0 | 1 |
| 2               | 0 | 0 | 0 | 1 |
| 3               | 0 | 0 | 0 | 0 |

So, Matrix 
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & & & \\ 0 & 0 & 0 \\ 1 & & & \\ 0 & 0 & 0 \end{pmatrix}$$

#### Undirected vs. Directed

- Undirected graph
  - adjacency matrix is symmetric
  - A[i][j]=A[j][i]
- Directed graph
  - o adjacency matrix may not be symmetric
  - $\circ \quad A[i][j] \neq A[j][i]$

# Weighted Graph

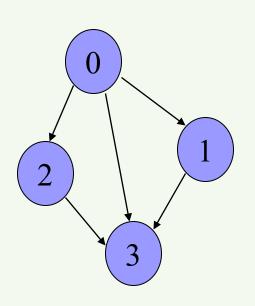


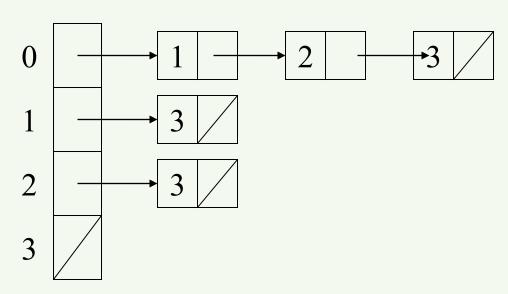
| <i>A</i> [i][j] | 0  | 1  | 2  | 3 |
|-----------------|----|----|----|---|
| 0               | 0  | 20 | 10 | 1 |
| 1               | 20 | 0  | 0  | 5 |
| 2               | 10 | 0  | 0  | 4 |
| 3               | 1  | 5  | 4  | 0 |

So, Matrix 
$$A = \begin{bmatrix} 0 & 20 & 10 \\ 1 & & \\ 20 & 0 & 0 \\ 5 & & \\ 10 & 0 & 0 \end{bmatrix}$$

## Adjacency List

- An array of list
- the ith element of the array is a list of vertices that connect to vertex i

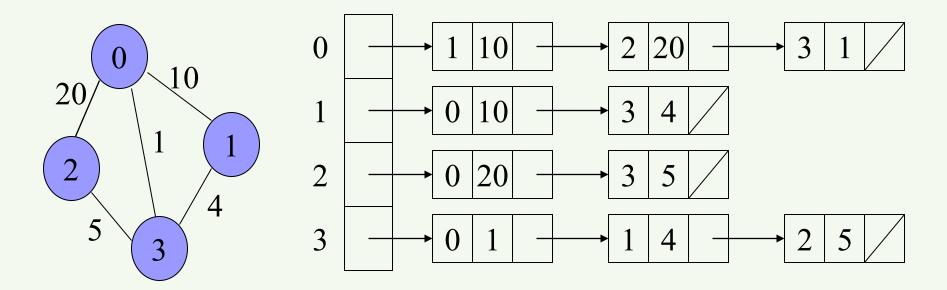




vertex 0 connect to vertex 1, 2 and 3 vertex 1 connects to 3 vertex 2 connects to 3

# Weighted Graph

Weighted graph: extend each node with an addition field: weight

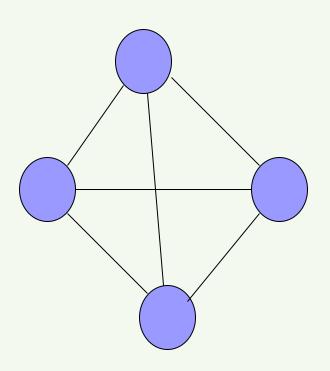


# Comparison Of Representations

| Cost                                                              | Adjacency<br>Matrix | Adjacency<br>List                  |
|-------------------------------------------------------------------|---------------------|------------------------------------|
| Given two vertices u and v: find out whether u and v are adjacent | O(1)                | degree of<br>node<br>O(N)          |
| Given a vertex u: enumerate all neighbors of u                    | O(N)                | degree of<br>node<br>O(N)          |
| For all vertices: enumerate all neighbors of each vertex          | O(N <sup>2</sup> )  | Summations of all node degree O(E) |

# Complete Graph

There is an edge between any two vertices

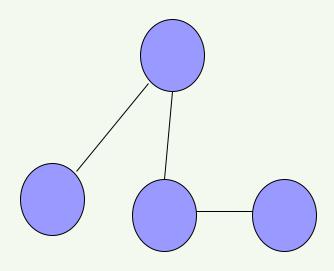


Total number of edges in graph:

$$E = N(N-1)/2 = O(N^2)$$

#### Sparse Graph

· There is a very small number of edges in the graph



For example:

$$E = N-1 = O(N)$$

#### Space Requirements

- Memory space:
  - o adjacency matrix

 $O(N^2)$ 

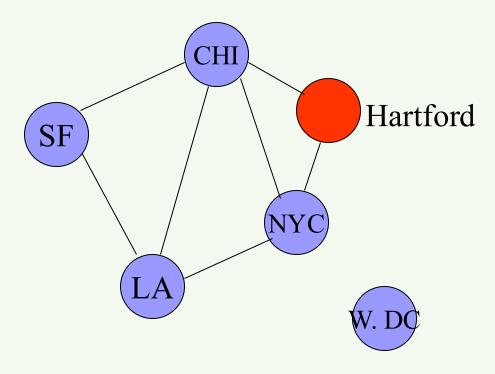
adjacency list

O(E)

- Sparse graph
  - o adjacency list is better
- Dense graph
  - o same running time

#### Graph Traversal

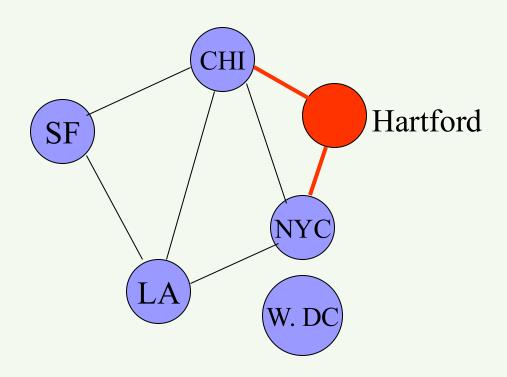
 List out all cities that United Airline can reach from Hartford Airport



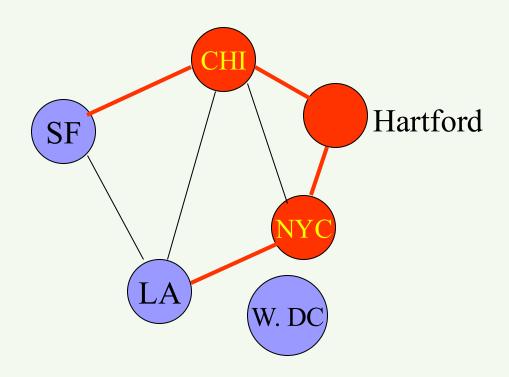
#### Graph Traversal

- From vertex u, list out all vertices that can be reached in graph G
- Set of nodes to expand
- Each node has a flag to indicate visited or not

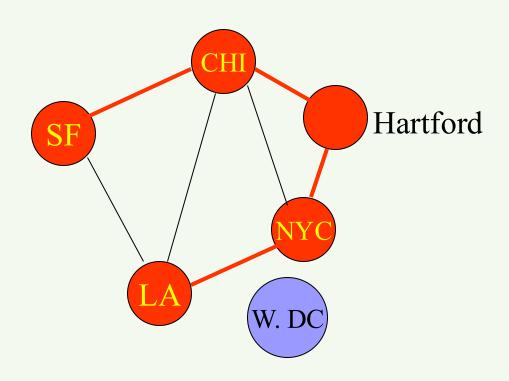
- Step 1: { Hartford }
  - find unvisited neighbors of Hartford



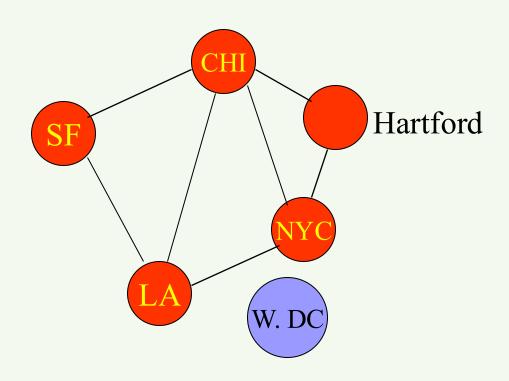
- Step 2: { Hartford, NYC, CHI }
  - o find unvisited neighbors of NYC, CHI
  - { Hartford, NYC, CHI, LA, SF }



- Step 3: {Hartford, NYC, CHI, LA, SF}
  - o find unvisited neighbors of LA, SF
  - o no other new neighbors



- Finally, we get all cities that United Airline can reach from Hartford Airport
  - (Hartford, NYC, CHI, LA, SF)



# Algorithm of Graph Traversal

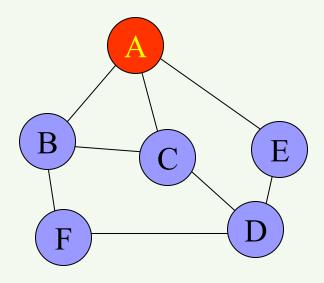
- Mark all nodes as unvisited
- 2. Pick a starting vertex u, add u to probing list
- While (probing list is not empty) Remove a node v from probing list Mark node v as visited For each neighbor w of v, if w is unvisited, add w to the probing list

# Graph Traversal Algorithms

- Two algorithms
  - Depth First Traversal
  - Breadth First Traversal

#### Depth First Traversal

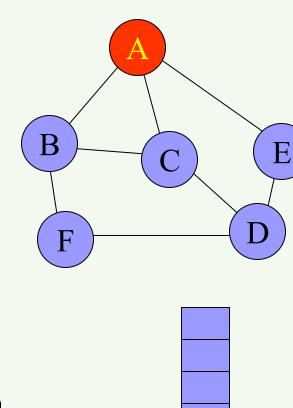
- Probing List is implemented as stack (LIFO)
- Example
  - A's neighbor: B, C, E
  - B's neighbor: A, C, F
  - C's neighbor: A, B, D
  - o D's neighbor: E, C, F
  - o E's neighbor: A, D
  - F's neighbor: B, D
  - start from vertex A



- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- > E's neighbor: A D
- F's neighbor: B D

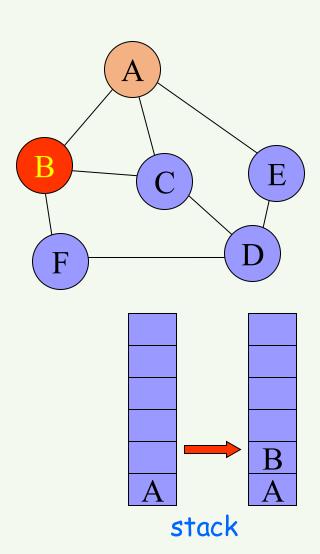
#### Initial State

- Visited Vertices { }
- Probing Vertices { A }
- Unvisited Vertices { A, B, C, D, E, F }

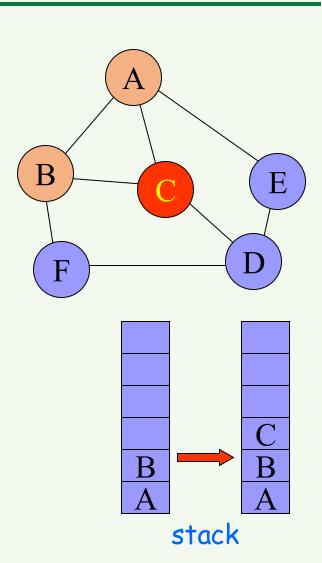


stack

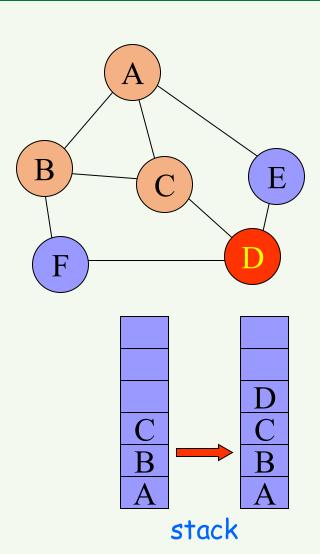
- > A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Peek a vertex from stack, it is A, mark it as visited
- Find A's first unvisited neighbor, push it into stack
  - Visited Vertices { A }
  - Probing vertices { A, B }
  - Unvisited Vertices { B, C, D, E, F }



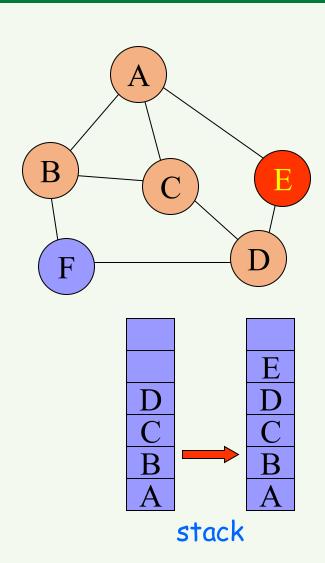
- > A's neighbor: BCE
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- > E's neighbor: A D
- > F's neighbor: B D
- Peek a vertex from stack, it is B, mark it as visited
- Find B's first unvisited neighbor, push it in stack
  - Visited Vertices { A, B }
  - Probing Vertices { A, B, C }
  - Unvisited Vertices { C, D, E, F }



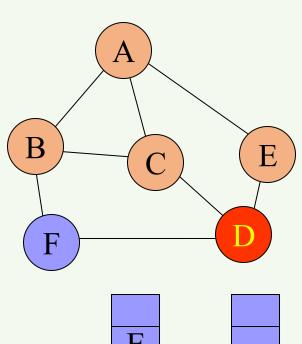
- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- > F's neighbor: B D
- Peek a vertex from stack, it is C, mark it as visited
- Find C's first unvisited neighbor, push it in stack
  - Visited Vertices { A, B, C }
  - Probing Vertices { A, B, C, D }
  - Unvisited Vertices { D, E, F }

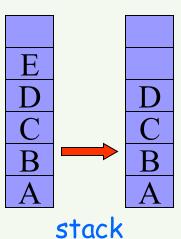


- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- > E's neighbor: A D
- > F's neighbor: B D
- Peek a vertex from stack, it is D, mark it as visited
- Find D's first unvisited neighbor, push it in stack
  - Visited Vertices { A, B, C, D }
  - Probing Vertices { A, B, C, D, E }
  - Unvisited Vertices { E, F }

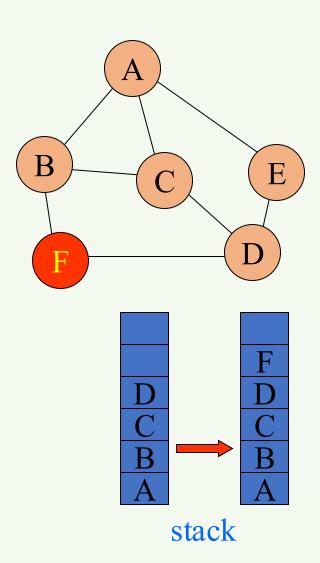


- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- E's neighbor: A D
- > F's neighbor: B D
- Peek a vertex from stack, it is E, mark it as visited
- Find E's first unvisited neighbor, no vertex found, Pop E
  - Visited Vertices { A, B, C, D, E }
  - Probing Vertices { A, B, C, D }
  - Unvisited Vertices { F }

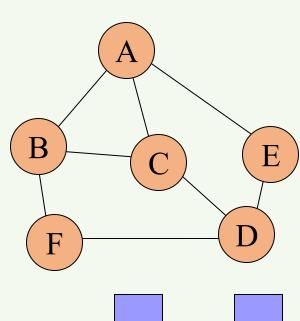


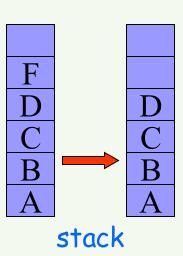


- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- E's neighbor: A D
- > F's neighbor: B D
- Peek a vertex from stack, it is D, mark it as visited
- Find D's first unvisited neighbor, push it in stack
  - Visited Vertices { A, B, C, D, E }
  - Probing Vertices { A, B, C, D, F}
  - Unvisited Vertices { F }

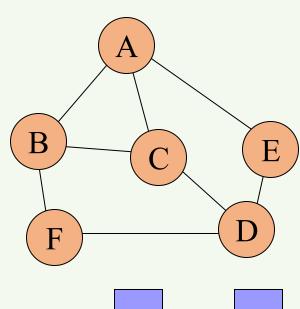


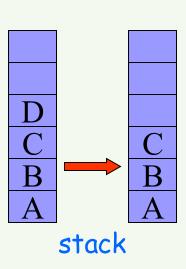
- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- > F's neighbor: B D
- Peek a vertex from stack, it is F, mark it as visited
- Find F's first unvisited neighbor, no vertex found, Pop F
  - Visited Vertices { A, B, C, D, E, F }
  - Probing Vertices { A, B, C, D}
  - Unvisited Vertices { }



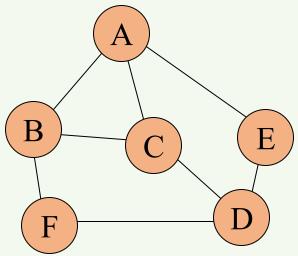


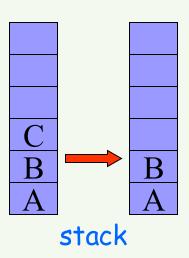
- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- > E's neighbor: A D
- > F's neighbor: B D
- Peek a vertex from stack, it is D, mark it as visited
- Find D's first unvisited neighbor, no vertex found, Pop D
  - Visited Vertices { A, B, C, D, E, F }
  - Probing Vertices { A, B, C }
  - Unvisited Vertices { }



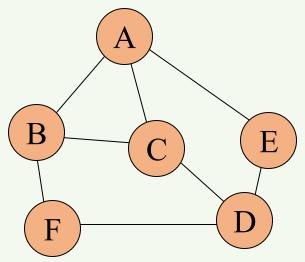


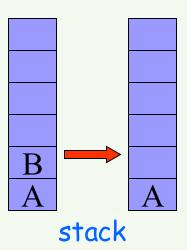
- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- > F's neighbor: B D
- Peek a vertex from stack, it is C, mark it as visited
- Find C's first unvisited neighbor, no vertex found, Pop C
  - Visited Vertices { A, B, C, D, E, F }
  - Probing Vertices { A, B }
  - Unvisited Vertices { }



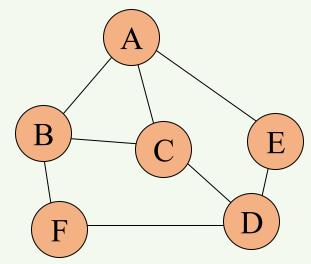


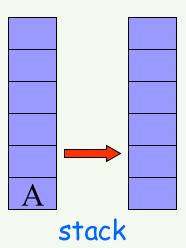
- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- E's neighbor: A D
- > F's neighbor: B D
- Peek a vertex from stack, it is B, mark it as visited
- Find B's first unvisited neighbor, no vertex found, Pop B
  - Visited Vertices { A, B, C, D, E, F }
  - Probing Vertices { A }
  - Unvisited Vertices { }



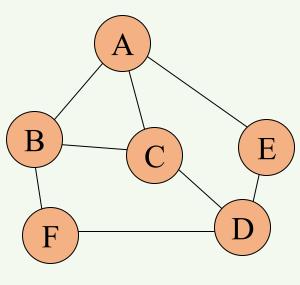


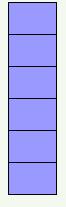
- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- > D's neighbor: ECF
- E's neighbor: A D
- > F's neighbor: B D
- Peek a vertex from stack, it is A, mark it as visited
- Find A's first unvisited neighbor, no vertex found, Pop A
  - Visited Vertices { A, B, C, D, E, F }
  - Probing Vertices { }
  - Unvisited Vertices { }





- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: E C F
- > E's neighbor: A D
- > F's neighbor: B D
- Now probing list is empty
- End of Depth First Traversal
  - Visited Vertices { A, B, C, D, E, F }
  - Probing Vertices { }
  - O Unvisited Vertices { }

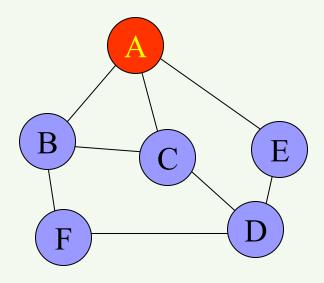




stack

#### Breadth First Traversal

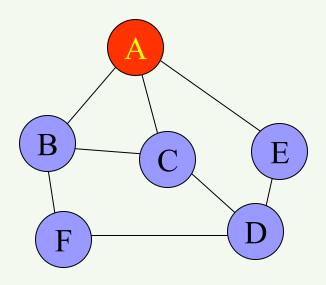
- Probing List is implemented as queue (FIFO)
- Example
  - A's neighbor: B C E
  - B's neighbor: A C F
  - C's neighbor: A B D
  - D's neighbor: E C F
  - o E's neighbor: A D
  - o F's neighbor: B D
  - start from vertex A



- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- > E's neighbor: A D
- > F's neighbor: B D

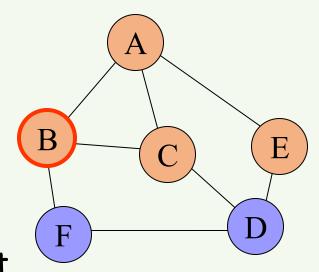
#### Initial State

- Visited Vertices { }
- Probing Vertices { A }
- Unvisited Vertices { A, B, C,D, E, F }

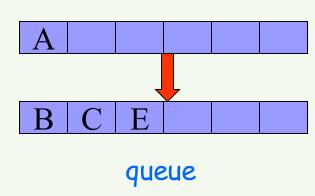




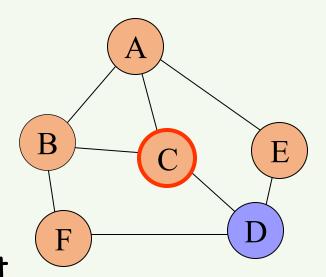
- A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- > D's neighbor: E C F
- > E's neighbor: A D
- > F's neighbor: B D



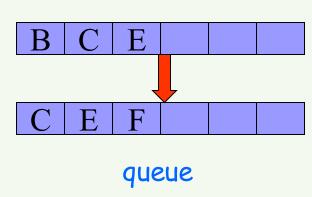
- Delete first vertex from queue, it is A, mark it as visited
- Find A's all unvisited neighbors, mark them as visited, put them into queue
  - Visited Vertices { A, B, C, E }
  - Probing Vertices { B, C, E }
  - Unvisited Vertices { D, F }



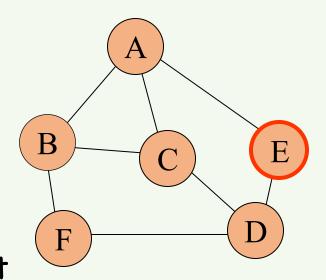
- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- > D's neighbor: ECF
- > E's neighbor: A D
- F's neighbor: B D



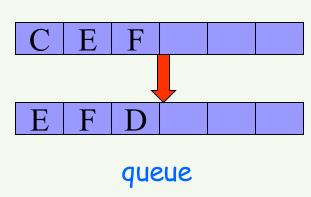
- Delete first vertex from queue, it is B, mark it as visited
- Find B's all unvisited neighbors, mark them as visited, put them into queue
  - Visited Vertices { A, B, C, E, F }
  - Probing Vertices { C, E, F }
  - Unvisited Vertices { D }



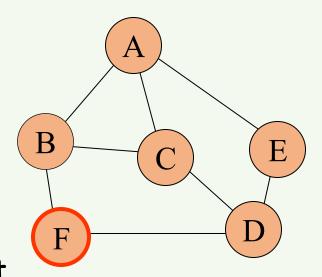
- A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- > E's neighbor: A D
- > F's neighbor: B D



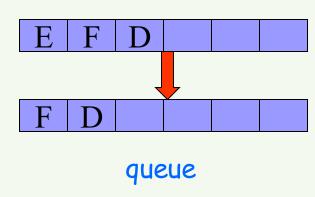
- Delete first vertex from queue, it is C, mark it as visited
- Find C's all unvisited neighbors, mark them as visited, put them into queue
  - Visited Vertices { A, B, C, E, F, D }
  - Probing Vertices { E, F, D }
  - Unvisited Vertices { }



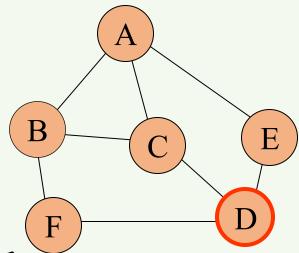
- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- > E's neighbor: A D
- > F's neighbor: B D



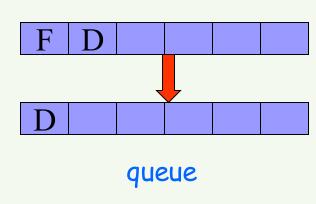
- Delete first vertex from queue, it is E, mark it as visited
- Find E's all unvisited neighbors, no vertex found
  - Visited Vertices { A, B, C, E, F, D }
  - Probing Vertices { F, D }
  - Unvisited Vertices { }



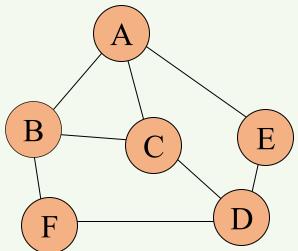
- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: E C F
- > E's neighbor: A D
- > F's neighbor: B D



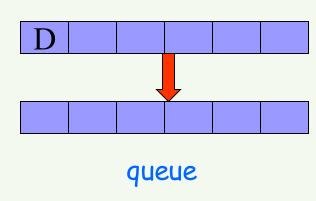
- Delete first vertex from queue, it is F, mark it as visited
- Find F's all unvisited neighbors, no vertex found
  - Visited Vertices { A, B, C, E, F, D }
  - Probing Vertices { D }
  - Unvisited Vertices { }



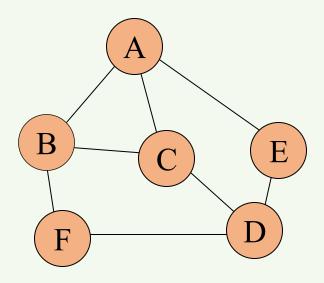
- > A's neighbor: B C E
- B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- > E's neighbor: A D
- F's neighbor: B D



- Delete first vertex from queue, it is D, mark it as visited
- Find D's all unvisited neighbors, no vertex found
  - Visited Vertices { A, B, C, E, F, D }
  - Probing Vertices { }
  - Unvisited Vertices { }



- > A's neighbor: B C E
- > B's neighbor: A C F
- > C's neighbor: A B D
- D's neighbor: ECF
- > E's neighbor: A D
- > F's neighbor: B D
- Now the queue is empty
- End of Breadth First Traversal
  - Visited Vertices { A, B, C, E, F, D }
  - Probing Vertices { }
  - Unvisited Vertices { }





#### Difference Between DFT & BFT

- Depth First Traversal (DFT)
  - order of visited: A, B, C, D, E, F

- Breadth First Traversal (BFT)
  - o order of visited: A, B, C, E, F, D

