
CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

CSCE 2110
Foundations of Data Structures

Graph I

University of North Texas

Slides borrowed/adapted from Prof. Yan Huang from UNT

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Northwest Airline Flight

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Computer Network Or Internet

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Application

• Traveling Salesman

o Find the shortest path that connects all cities
without a loop.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Concepts of Graphs

CSCE 2110 – Foundations of Data Structure

Graph Definition

• A graph G = (V,E) is composed of:

 V: set of vertices (nodes)

 E: set of edges (arcs) connecting the vertices in V

• An edge e = (u,v) is a pair of vertices

• Example:
a b

c

d e

V= {a,b,c,d,e}

E= {(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e), (d,e)}

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Undirected vs. Directed Graph

A

D

C

B

A

D

C

B

Undirected Graph

– edges have no direction

Directed Graph

– edges have a specific
direction from one vertex to
another.

CSCE 2110 – Foundations of Data Structure

• The degree of a vertex is the number of edges to that
vertex

• For directed graph,
o the in-degree of a vertex v is the number of edges

that have v as the head
o the out-degree of a vertex v is the number of edges

that have v as the tail

if di is the degree of a vertex i in a graph G with n vertices and
e edges, the number of edges is

e d
i

n

=
−

() /
0

1

2

Degree of a Vertex

Hint: Adjacent vertices are

counted twice.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Degree of a Vertex

A

D

C

B

A

D

C

B

Degree(A)=?

Degree(B)=?

Degree(C)=?

Degree(D)=?

In-degree(A)=? Out-degree(A)=?

In-degree(B)=? Out-degree(B)=?

In-degree(C)=? Out-degree(C)=?

In-degree(D)=? Out-degree(D)=?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Subgraph

A

D

C

B

A

DB

• Subgraph:
o subset of vertices and edges

A

C

B D

Subgraph 1

Subgraph 2

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Simple Path

• A simple path is a path such that all vertices are distinct,
except that the first and the last could be the same.

o ABCD is a simple path

B

C

D

A

path

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Cycle

• A cycle is a path that starts and ends at the same
point. For undirected graph, the edges are distinct.

o CBDC is a cycle

B

C

D

A

circle

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Connected vs. Unconnected Graph

Connected Graph Unconnected Graph

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Directed Acyclic Graph

• Directed Acyclic Graph (DAG) : directed graph without
cycle

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Weighted Graph

• Weighted graph: a graph with numbers assigned to its
edges

• Weight: cost, distance, travel time, hop, etc.

0

1

3

2

20
10

1

5
4

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Representation Of Graph

• Two representations

o Adjacency Matrix

o Adjacency List

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Adjacency Matrix

• Assume N nodes in graph

• Use 2D Matrix A[0…N-1][0…N-1]

o if vertex i and vertex j are adjacent in graph, A[i][j] = 1,

o otherwise A[i][j] = 0

o if vertex i has a loop, A[i][i] = 1

o if vertex i has no loop, A[i][i] = 0

CSCE 2110 – Foundations of Data Structure

Example of Adjacency Matrix

0

1

3

2

CSCE 2110 – Foundations of Data Structure

0

1

3

2

A[i][j] 0 1 2 3

0 0 1 1 0

1 1 0 1 1

2 1 1 0 1

3 0 1 1 0

So, Matrix A =

0 1 1
0

1 0 1
1

1 1 0
1

0 1 1
0

Example of Adjacency Matrix

CSCE 2110 – Foundations of Data Structure

0

1

3

2
So, Matrix A =?

Example of Adjacency Matrix

CSCE 2110 – Foundations of Data Structure

A[i][j] 0 1 2 3

0 1 1 1 0

1 1 0 1 1

2 1 1 0 1

3 0 1 1 1

So, Matrix A =

1 1 1
0

1 0 1
1

1 1 0
1

0 1 1
1

0

1

3

2

Example of Adjacency Matrix

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

A[i][j] 0 1 2 3

0 0 1 1 1

1 0 0 0 1

2 0 0 0 1

3 0 0 0 0

0

1

3

2

So, Matrix A =

0 1 1
1

0 0 0
1

0 0 0
1

0 0 0
0

Example of Adjacency Matrix

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Undirected vs. Directed

• Undirected graph

o adjacency matrix is symmetric

o A[i][j]=A[j][i]

• Directed graph

o adjacency matrix may not be symmetric

o A[i][j] ≠ A[j][i]

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Weighted Graph

A[i][j] 0 1 2 3

0 0 20 10 1

1 20 0 0 5

2 10 0 0 4

3 1 5 4 0

0

1

3

2

20
10

1

5
4

So, Matrix A =

0 20 10
1

20 0 0
5

10 0 0
4

 1 5 4
0

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Adjacency List

• An array of list

• the ith element of the array is a list of vertices that
connect to vertex i

0

1

3

2

0

1

2

3

1 2 3

3

3

vertex 0 connect to vertex 1, 2 and 3
vertex 1 connects to 3
vertex 2 connects to 3

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Weighted Graph

• Weighted graph: extend each node with an addition
field: weight

0

1

3

2

20
10

1

5
4

0

1

2

3

1 10 2 20 3 1

0 10 3 4

0 20 3 5

0 1 1 4 2 5

CSCE 2110 – Foundations of Data Structure

Comparison Of Representations

Cost
Adjacency

Matrix
Adjacency

List

Given two vertices u and v:

find out whether u and v are adjacent
O(1)

degree of
node

O(N)

Given a vertex u:

enumerate all neighbors of u
O(N)

degree of
node

O(N)

For all vertices:

enumerate all neighbors of each vertex
O(N2)

Summations
of all node

degree

O(E)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Complete Graph

Total number of edges in graph:

 E = N(N-1)/2 = O(N2)

• There is an edge between any two vertices

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Sparse Graph

For example:

 E = N-1= O(N)

• There is a very small number of edges in the graph

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Space Requirements

• Memory space:

o adjacency matrix O(N2)

o adjacency list O(E)

• Sparse graph

o adjacency list is better

• Dense graph

o same running time

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Graph Traversal

• List out all cities that United Airline can reach from
Hartford Airport

CHI

LA

SF

NYC

Hartford

W. DC

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Graph Traversal

• From vertex u, list out all vertices that can be reached
in graph G

• Set of nodes to expand

• Each node has a flag to indicate visited or not

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Traversal Algorithm

• Step 1: { Hartford }

o find unvisited neighbors of Hartford

o { Hartford, NYC, CHI }

CHI

NYC

LA

SF Hartford

W. DC

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Traversal Algorithm

• Step 2: { Hartford, NYC, CHI }

o find unvisited neighbors of NYC, CHI

o { Hartford, NYC, CHI, LA, SF }

CHI

NYC

LA

SF Hartford

W. DC

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Traversal Algorithm

• Step 3: {Hartford, NYC, CHI, LA, SF }

o find unvisited neighbors of LA, SF

o no other new neighbors

CHI

NYC

LA

SF Hartford

W. DC

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Traversal Algorithm

• Finally, we get all cities that United Airline can reach
from Hartford Airport

o {Hartford, NYC, CHI, LA, SF }

CHI

NYC

LA

SF Hartford

W. DC

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Algorithm of Graph Traversal

1. Mark all nodes as unvisited

2. Pick a starting vertex u, add u to probing list

3. While (probing list is not empty)

 {

 Remove a node v from probing list

 Mark node v as visited

 For each neighbor w of v, if w is unvisited,
 add w to the probing list

 }

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Graph Traversal Algorithms

• Two algorithms

o Depth First Traversal

o Breadth First Traversal

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Depth First Traversal

• Probing List is implemented as stack (LIFO)

• Example

o A’s neighbor: B, C, E

o B’s neighbor: A, C, F

o C’s neighbor: A, B, D

o D’s neighbor: E, C, F

o E’s neighbor: A, D

o F’s neighbor: B, D

o start from vertex A

A

B
C E

F D

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Depth First Traversal (Cont)

• Initial State

o Visited Vertices { }

o Probing Vertices { A }

o Unvisited Vertices { A, B, C, D, E, F }

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Astack

A

B
C E

F D

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is
A, mark it as visited

• Find A’s first unvisited
neighbor, push it into stack
o Visited Vertices { A }

o Probing vertices { A, B }

o Unvisited Vertices { B, C, D, E, F }

A

B
C E

F D

B
A

stack
A

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is B,
mark it as visited

• Find B’s first unvisited neighbor,
push it in stack
o Visited Vertices { A, B }

o Probing Vertices { A, B, C }

o Unvisited Vertices { C, D, E, F }

C
B
A

stack

B
A

A

B
C E

F D

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is C,
mark it as visited

• Find C’s first unvisited neighbor,
push it in stack
o Visited Vertices { A, B, C }

o Probing Vertices { A, B, C, D }

o Unvisited Vertices { D, E, F }
stack

A

B
C E

F D

D
C
B
A

C
B
A

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is
D, mark it as visited

• Find D’s first unvisited
neighbor, push it in stack
o Visited Vertices { A, B, C, D }

o Probing Vertices { A, B, C, D, E }

o Unvisited Vertices { E, F } stack

A

B
C E

F D

D
C
B

E

A

D
C
B
A

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is E,
mark it as visited

• Find E’s first unvisited neighbor,
no vertex found, Pop E
o Visited Vertices { A, B, C, D, E }

o Probing Vertices { A, B, C, D }

o Unvisited Vertices { F } stack

A

B
C E

F D

D
C
B
A

D
C
B

E

A

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is D,
mark it as visited

• Find D’s first unvisited neighbor,
push it in stack
o Visited Vertices { A, B, C, D, E }

o Probing Vertices { A, B, C, D, F}

o Unvisited Vertices { F }
stack

A

B
C E

F D

D
C
B

F

A

D
C
B
A

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is F,
mark it as visited

• Find F’s first unvisited neighbor,
no vertex found, Pop F
o Visited Vertices { A, B, C, D, E, F }

o Probing Vertices { A, B, C, D}

o Unvisited Vertices { } stack

A

B
C E

F D

D
C
B
A

D
C
B

F

A

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is
D, mark it as visited

• Find D’s first unvisited neighbor,
no vertex found, Pop D
o Visited Vertices { A, B, C, D, E, F }

o Probing Vertices { A, B, C }

o Unvisited Vertices { } stack

A

B
C E

F D

C
B
A

D
C
B
A

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is C,
mark it as visited

• Find C’s first unvisited neighbor,
no vertex found, Pop C
o Visited Vertices { A, B, C, D, E, F }

o Probing Vertices { A, B }

o Unvisited Vertices { } stack

A

B
C E

F D

B
A

C
B
A

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is B,
mark it as visited

• Find B’s first unvisited neighbor,
no vertex found, Pop B
o Visited Vertices { A, B, C, D, E, F }

o Probing Vertices { A }

o Unvisited Vertices { } stack

A

B
C E

F D

A
B
A

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Peek a vertex from stack, it is
A, mark it as visited

• Find A’s first unvisited neighbor,
no vertex found, Pop A
o Visited Vertices { A, B, C, D, E, F }

o Probing Vertices { }

o Unvisited Vertices { } stack

A

B
C E

F D

A

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Now probing list is empty

• End of Depth First Traversal
o Visited Vertices { A, B, C, D, E, F }

o Probing Vertices { }

o Unvisited Vertices { }

stack

A

B
C E

F D

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Depth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Breadth First Traversal

• Probing List is implemented as queue (FIFO)

• Example

o A’s neighbor: B C E

o B’s neighbor: A C F

o C’s neighbor: A B D

o D’s neighbor: E C F

o E’s neighbor: A D

o F’s neighbor: B D

o start from vertex A

A

B
C E

F D

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Initial State

o Visited Vertices { }

o Probing Vertices { A }

o Unvisited Vertices { A, B, C,
D, E, F }

A

B
C E

F D

A

queue

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Breadth First Traversal (Cont)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Delete first vertex from queue, it
is A, mark it as visited

• Find A’s all unvisited neighbors,
mark them as visited, put them into
queue
o Visited Vertices { A, B, C, E }

o Probing Vertices { B, C, E }

o Unvisited Vertices { D, F }

A

B
C E

F D

A

B EC

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Breadth First Traversal (Cont)

queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Delete first vertex from queue, it
is B, mark it as visited

• Find B’s all unvisited neighbors,
mark them as visited, put them into
queue
o Visited Vertices { A, B, C, E, F }

o Probing Vertices { C, E, F }

o Unvisited Vertices { D }

A

B
C E

F D

B EC

C FE

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Breadth First Traversal (Cont)

queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Delete first vertex from queue, it
is C, mark it as visited

• Find C’s all unvisited neighbors,
mark them as visited, put them into
queue
o Visited Vertices { A, B, C, E, F, D }

o Probing Vertices { E, F, D }

o Unvisited Vertices { }

A

B
C E

F D

C FE

E DF

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Breadth First Traversal (Cont)

queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Delete first vertex from queue, it
is E, mark it as visited

• Find E’s all unvisited neighbors, no
vertex found

o Visited Vertices { A, B, C, E, F, D }

o Probing Vertices { F, D }

o Unvisited Vertices { }

A

B
C E

F D

E DF

F D

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Breadth First Traversal (Cont)

queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Delete first vertex from queue, it is
F, mark it as visited

• Find F’s all unvisited neighbors, no
vertex found

o Visited Vertices { A, B, C, E, F, D }

o Probing Vertices { D }

o Unvisited Vertices { }

A

B
C E

F D

F D

D

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Breadth First Traversal (Cont)

queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Delete first vertex from queue, it is
D, mark it as visited

• Find D’s all unvisited neighbors, no
vertex found

o Visited Vertices { A, B, C, E, F, D }

o Probing Vertices { }

o Unvisited Vertices { }

A

B
C E

F D

D

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Breadth First Traversal (Cont)

queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Now the queue is empty

• End of Breadth First Traversal
o Visited Vertices { A, B, C, E, F, D }

o Probing Vertices { }

o Unvisited Vertices { }

A

B
C E

F D

➢ A’s neighbor: B C E
➢ B’s neighbor: A C F
➢ C’s neighbor: A B D
➢ D’s neighbor: E C F
➢ E’s neighbor: A D
➢ F’s neighbor: B D

Breadth First Traversal (Cont)

queue

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

• Depth First Traversal (DFT)

o order of visited: A, B, C, D, E, F

• Breadth First Traversal (BFT)

o order of visited: A, B, C, E, F, D

A

B
C E

F D

Difference Between DFT & BFT

	Slide 1
	Slide 2: Northwest Airline Flight
	Slide 3: Computer Network Or Internet
	Slide 4: Application
	Slide 5: Concepts of Graphs
	Slide 6: Graph Definition
	Slide 7: Undirected vs. Directed Graph
	Slide 8
	Slide 9: Degree of a Vertex
	Slide 10: Subgraph
	Slide 11: Simple Path
	Slide 12: Cycle
	Slide 13: Connected vs. Unconnected Graph
	Slide 14: Directed Acyclic Graph
	Slide 15: Weighted Graph
	Slide 16: Representation Of Graph
	Slide 17: Adjacency Matrix
	Slide 18: Example of Adjacency Matrix
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Undirected vs. Directed
	Slide 24: Weighted Graph
	Slide 25: Adjacency List
	Slide 26: Weighted Graph
	Slide 27: Comparison Of Representations
	Slide 28: Complete Graph
	Slide 29: Sparse Graph
	Slide 30: Space Requirements
	Slide 31: Graph Traversal
	Slide 32: Graph Traversal
	Slide 33: Traversal Algorithm
	Slide 34: Traversal Algorithm
	Slide 35: Traversal Algorithm
	Slide 36: Traversal Algorithm
	Slide 37: Algorithm of Graph Traversal
	Slide 38: Graph Traversal Algorithms
	Slide 39: Depth First Traversal
	Slide 40: Depth First Traversal (Cont)
	Slide 41: Depth First Traversal (Cont)
	Slide 42: Depth First Traversal (Cont)
	Slide 43: Depth First Traversal (Cont)
	Slide 44: Depth First Traversal (Cont)
	Slide 45: Depth First Traversal (Cont)
	Slide 46: Depth First Traversal (Cont)
	Slide 47: Depth First Traversal (Cont)
	Slide 48: Depth First Traversal (Cont)
	Slide 49: Depth First Traversal (Cont)
	Slide 50: Depth First Traversal (Cont)
	Slide 51: Depth First Traversal (Cont)
	Slide 52: Depth First Traversal (Cont)
	Slide 53: Breadth First Traversal
	Slide 54: Breadth First Traversal (Cont)
	Slide 55: Breadth First Traversal (Cont)
	Slide 56: Breadth First Traversal (Cont)
	Slide 57: Breadth First Traversal (Cont)
	Slide 58: Breadth First Traversal (Cont)
	Slide 59: Breadth First Traversal (Cont)
	Slide 60: Breadth First Traversal (Cont)
	Slide 61: Breadth First Traversal (Cont)
	Slide 62: Difference Between DFT & BFT

